Empirical Bayes vs. Fully Bayes Variable Selection

نویسندگان

  • Wen Cui
  • Edward I. George
چکیده

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical Bayes variable selection. Biometrika 87(4), 731–747] to improve on these fixed selection criteria. In this paper, we study the potential of alternative fully Bayes methods, which instead margin out the hyperparameters with respect to prior distributions. Several structured prior formulations are considered for which fully Bayes selection and estimation methods are obtained. Analytical and simulation comparisons with empirical Bayes counterparts are studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes and Empirical-bayes Multiplicity Adjustment in the Variable-selection Problem

This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. The first goal of the paper is to clarify when, and how, multiplicity correction is automatic in Bayesian analysis, and contrast this multiplicity correction with the Bayesian Ockham’s-razor effect. Secondly, we contrast empirical-Bayes and fully Bayesian approaches to vari...

متن کامل

A Hierarchical Bayes Approach to Variable Selection for Generalized Linear Models

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...

متن کامل

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

Multiple Testing, Empirical Bayes, and the Variable-Selection Problem

This paper studies the multiplicity-correction effect of standard Bayesian variableselection priors in linear regression. The first goal of the paper is to clarify when, and how, multiplicity correction is automatic in Bayesian analysis, and contrast this multiplicity correction with the Bayesian Ockham’s-razor effect. Secondly, we contrast empirical-Bayes and fully Bayesian approaches to varia...

متن کامل

Adaptive Bayesian Criteria in Variable Selection for Generalized Linear Models

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017